

High intensity statin therapy in DM + ASCVD and Managing statin intolerance

Neha Pagidipati MD MPH Duke Clinical Research Institute

Disclosures

COORDINATE-Diabetes

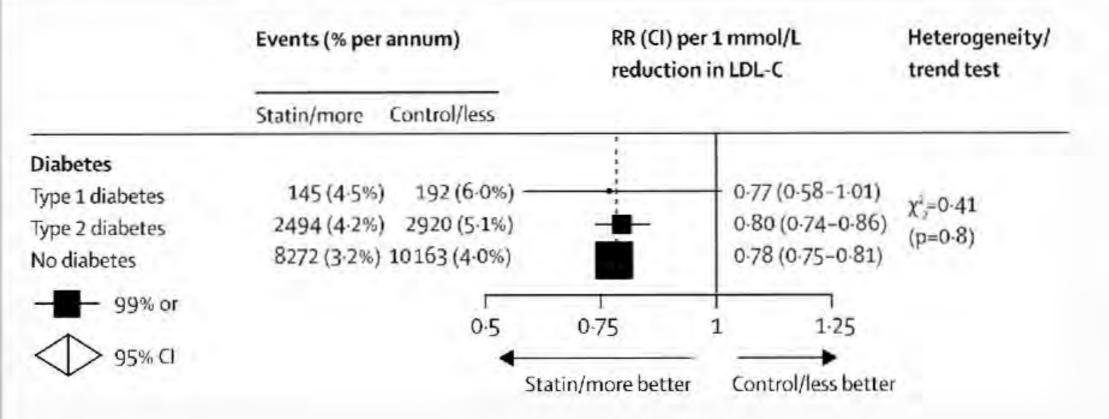
Objectives

- Evidence for statins in DM + ASCVD
- Statin intolerance
 - Who discontinues and why?
 - Definition of intolerance
 - Prevalence: RCT vs. observational data
 - Algorithms + case-based management

Placebo-controlled statin trials in ASCVD with DM

Trial & date	Intervention	Population	DM sample	Outcomes
4S 1994	Simvastatin 20-40mg vs. placebo	4,444	483 (11%)	Mortality \leftrightarrow MACE \downarrow 55%
CARE 1996	Pravastatin 40mg vs. placebo	4,159	586 (14%)	MACE \leftrightarrow Fatal or non-fatal CHD \downarrow 25%
LIPID 1998	Pravastatin 40mg vs. placebo	9,014	1,077 (12%)	$MACE \leftrightarrow$ $CVE \downarrow 21\%$
HPS 2002	Simvastatin 40mg vs. usual care	20,536	3,051 (15%)	↓27% CHD death, non-fatal MI ↓24% stroke (6-↓39%,P=0.01) ↓22% MACE (13-30%,P<0.0001)
SPARCL 2006	Atorvastatin 80mg vs. placebo	4,731	798 (17%)	MACE \downarrow 51% No difference in stroke.

Haffner SM Arch Intern Med 1999; Goldberg RB Circulation 1998; LIPID NEJM 1998; HPS Lancer 2003; Callahan A AMA Neuro 2011

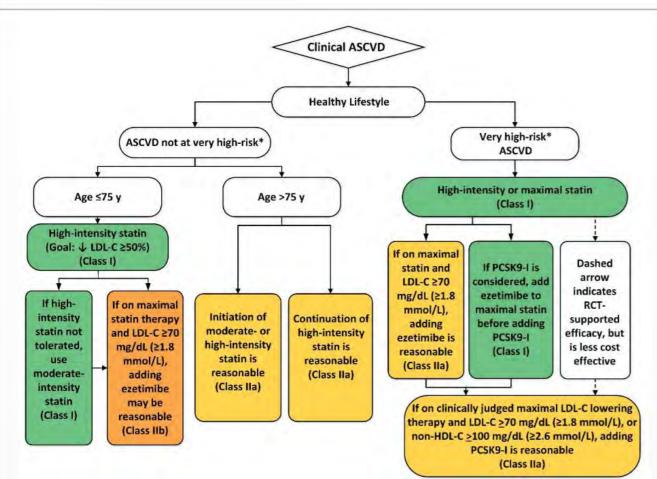

Placebo-controlled statin trials in DM with ASCVD


	Events (%)				Test for heterogenity
Groups	Treatment	Control		RR (CI)	or trend
Type of diabetes:					
Type 1 diabetes	147 (20.5%)	196 (26-2%)		0.79 (0.62-1.01)	$\chi^{2}_{1}=0.0; p=1.0$
Type 2 diabetes	1318 (15.2%)	1586 (18.5%)		0.79 (0.72-0.87)	
Sex:					
Men	1082 (17.2%)	1332 (21.4%)		0.78 (0.71-0.86)	
Women	383 (12.4%)	450 (14.6%)		0.81 (0.67-0.97)	$\chi^{2}_{1}=0.1; p=0.7$
Age (years):					
≤65	701 (13-1%)	898 (17.1%)	-	0.77 (0.68-0.87)	
>65	764 (18.9%)	884 (21.8%)	-	0.81 (0.71-0.92)	χ ² ₁ =0·5; p=0·5
Currently treated hypertension:			_		
Yes	1030 (16.3%)	1196 (19.1%)	-	0.82 (0.74-0.91)	w ² - 2 7: m - 0 1
No	435 (14.2%)	586 (19.3%)		0.73 (0.63-0.85)	$\chi_{1}^{2}=2.7; p=0.1$
Body-mass index:					
<25.0	276 (15.7%)	362 (20.4%)		0.78 (0.64-0.95)	
≥25·0-<30·0	639 (15.9%)	774 (19.8%)	-	0.77 (0.68-0.88)	$\chi^{2}_{1}=0.5; p=0.5$
≥30-0	532 (15.1%)	628 (17-6%)		0.82 (0.71–0.95)	
Systolic blood pressure (mm Hg):					
<160	993 (15.0%)	1276 (19.1%)	-	0.76 (0.69-0.85)	w ² -1 2: m-0 2
≥160	472 (17.1%)	505 (19.2%)		0.83 (0.71-0.96)	$\chi^{2}_{1}=1.3; p=0.3$
Diastolic blood pressure (mm Hg):					
≤90	1176 (16.5%)	1417 (19.8%)		0.81 (0.73-0.89)	χ ² ,=1·7; p=0·2
>90	288 (12.9%)	364 (17.1%)		0.73 (0.61-0.87)	χ1=17, μ=0.2
Smoking status:			20.000 M		
Current smokers	266 (17.5%)	347 (22.5%)		0.78 (0.64-0.96)	$\chi^2_1 = 0.0; p = 0.9$
Non-smokers	1199 (15-2%)	1435 (18·5%)		0.79 (0.72-0.87)	χ 1=0.0, μ=0.9
Estimated GFR (mL/min/1-73m ²):			_		
<60	415 (20.6%)	477 (24.0%)		0.83 (0.71-0.97)	
≥60-<90	816 (15.5%)	961 (18-4%)	-	0.81 (0.72-0.91)	$\chi^{2}_{1}=2.9; p=0.09$
≥90	194 (12·5%)	286 (18-7%)		0.65 (0.50-0.84)	2
Predicted risk of major vascular event (per year):					
<4.5%	474 (8.4%)	631 (11.2%)		0.74 (0.64-0.85)	
≥4·5-<8·0%	472 (23.2%)	540 (27.3%)	_ _	0.80 (0.66-0.96)	$\chi^{2}_{1}=1.8; p=0.2$
≥8.0%	519 (30.5%)	611 (35-8%)		0.82 (0.70-0.95)	A1
All diabetes	1465 (15.6%)	1782 (19-2%)	₽	0-79 (0-74-0-84)	
Global test for heterogeneity within subtotals: χ^2_{13} =1; → ■ R (99% CI) → RR (95% CI)	3·9: p=0·4	Treatme	5 1.0 ent better	1.5 Control better	

COORDINATE-Diabetes

CTT Lancet 2008

High intensity trials in DM with ASCVD


Statin intensity

	High intensity	Moderate Intensity	Low Intensity
LDL-C lowering	≥50%	30-49%	<30%
Statins	Atorvastatin 40-80mg Rosuvastatin 20-40mg	Atorvastatin 10-20mg Rosuvastatin 5-10mg Simvastain 20-40mg	Simvastatin 10mg
		Pravastatin 40-80mg Lovastatin 40-80mg Fluvastatin XL 80mg Pitavastatin 1-4mg	Pravastatin 10-20mg Lovastatin 20mg Fluvastatin 20-40mg

Grundy et al JACC 2018

Statin guidelines: ACC

Recent ACS (within the past 12 mo)	
History of MI (other than recent ACS event listed above)	
History of ischemic stroke	
Symptomatic peripheral arterial disease (history of claudication with ABI <0.85, or pre amputation (S4.1-39))	vious revascularization or
High-Risk Conditions	
Age ≥65 y	
Heterozygous familial hypercholesterolemia	
History of prior coronary artery bypass surgery or percutaneous coronary intervention ASCVD event(s)	n outside of the major
Diabetes mellitus	
Hypertension	
CKD (eGFR 15-59 mL/min/1.73 m ²) (S4.1-15, S4.1-17)	
Current smoking	
Persistently elevated LDL-C (LDL-C ≥100 mg/dL [≥2.6 mmol/L]) despite maximally toler ezetimibe	rated statin therapy and
History of congestive HF	Ausmondton

COORDINATE-Diabetes

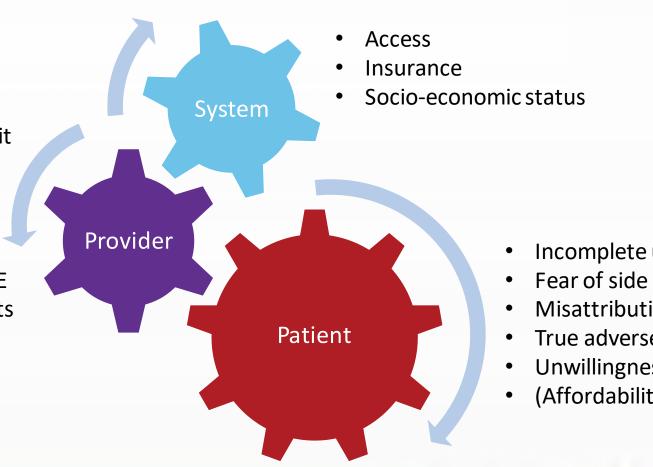
Maior ASCVD Events

Grundy et al JACC 2018

Statins in key subgroups

Subgroup	Considerations
Elderly	No specific hazard in trials including >65, >75, >80yos (PROSPER, CORONA) Higher levels of comorbidity and polypharmacy increase risk of AE
Prior ICH	Limited data. Potential signal in those with prior history of ICH. Risk/benefit assessment of further ICH vs. MACCE
Chronic Kidney disease	Safe for CKD 2 through 4 (SHARP, UK-HARP), and dialysis. No convincing benefit in dialysis (4D, AURORA)
Liver disease	Contraindicated in 'active liver disease'. However treatment when ALT/AST up to 3 x ULN does not lead to deterioration No evidence of harm (+/- possible benefit) in biopsy proven NAFLD or HBV/HCV No data in decompensated or cirrhotic liver disease

Kjekshus J NEJM 2007; Shepher J Lancet 2002; Baigent C Lancet 2011; Flint AC JAMA Neurol. 2014; Goldstein LB Neurology 2008; Tonelli Circulation 2004; Baigent C Am J Kidney Dis 2005; Chalasani N Gastroenterology 2004; Vuppalanchi R Am J Med Sci 2005; Tikkanen MJ Int J Cardiol. 2013; Fellstrom BC NEJM 2009


Statin non-persistence

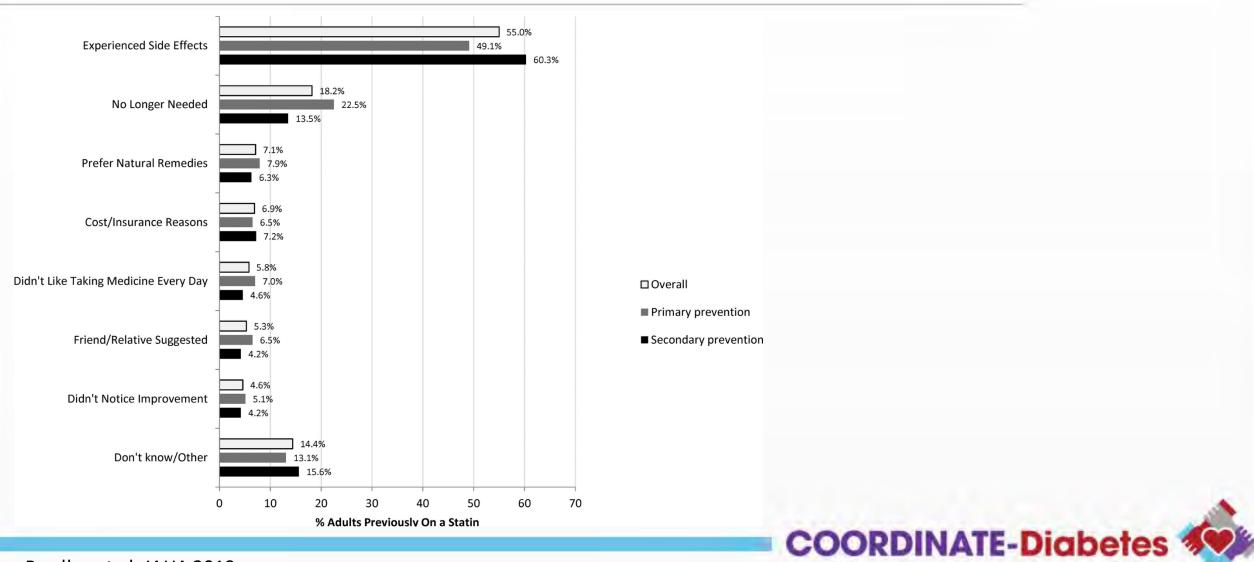
- In real-world practice, persistence with statins after 3 years:
 - <30% in primary prevention
 - <45% in secondary prevention
- Non-persistence is associated with poor outcomes
 - After adjustment for 'healthy behavior'
- Non-persistence is **more** than intolerance

Banach M Int J Cardiol. 2016; Jackevicius CA JAMA 2002; Rodriguez F JAMA Cardiology 2019

Reasons for discontinuation: more than intolerance

- Inadequate knowledge of benefit
- Preconceived beliefs about risks - dementia, ICH, liver failure
- Inertia from prior rare 'events'
- Unwillingness to re-challenge
- Lack of time to elucidate ADR/AE and temporal sequence of events

Incomplete understanding of benefits


- Fear of side effects (media, others)
- Misattribution of ADRs

COORDINATE-Diabetes

- True adverse events
- Unwillingness to re-challenge
- (Affordability)

Bradley CK JAHA 2019; Nanna MG JAMA Cardiol 2019; Spence JD JAHA 2016

From PALM, in those that discontinued statins...

Bradley et al. JAHA 2019

Statin intolerance: definition

An inability to tolerate the dose of a statin required to sufficiently reduce a person's LDL cholesterol and/or cardiovascular risk due to significant adverse effects, including abnormally elevated markers of either liver or muscle function.

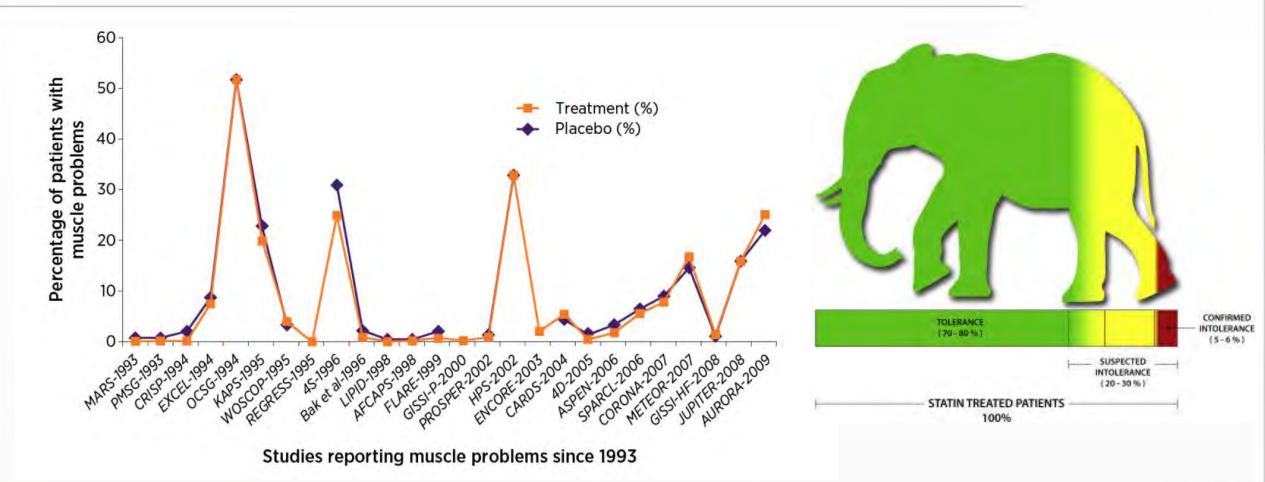
Statin intolerance: extent of problem

• Most RWD suggest between 10-40% have symptoms that lead to cessation

COORDINATE-Diabetes

- SAMS are the most common reported AE the cause in up to 50%
- RCT data suggest minimal absolute difference in SAMS
 - Significant nocebo effect

Zhang et al. Ann Intern Med 2013; Cohen JD J Clin Lipidol. 2012


Muscle Adverse Event Terminology

Adverse Event Term	Definition
Statin-associated muscle symptoms (SAMS)	Muscle symptoms reported during statin therapy but not necessarily caused by the statin
Myalgia	Muscle pain or aches, no CK rise
Myopathy/myositis	Unexplained muscle pain or weakness accompanied by CK concentration > 10 x ULN
Rhabdomyolysis	Severe form of myopathy, CK typically > 40 x ULN, which can cause myoglobinuria and acute renal failure

COORDINATE-Diabetes

Newman CB et al. Arterioscler Thromb Vasc Biol 2019

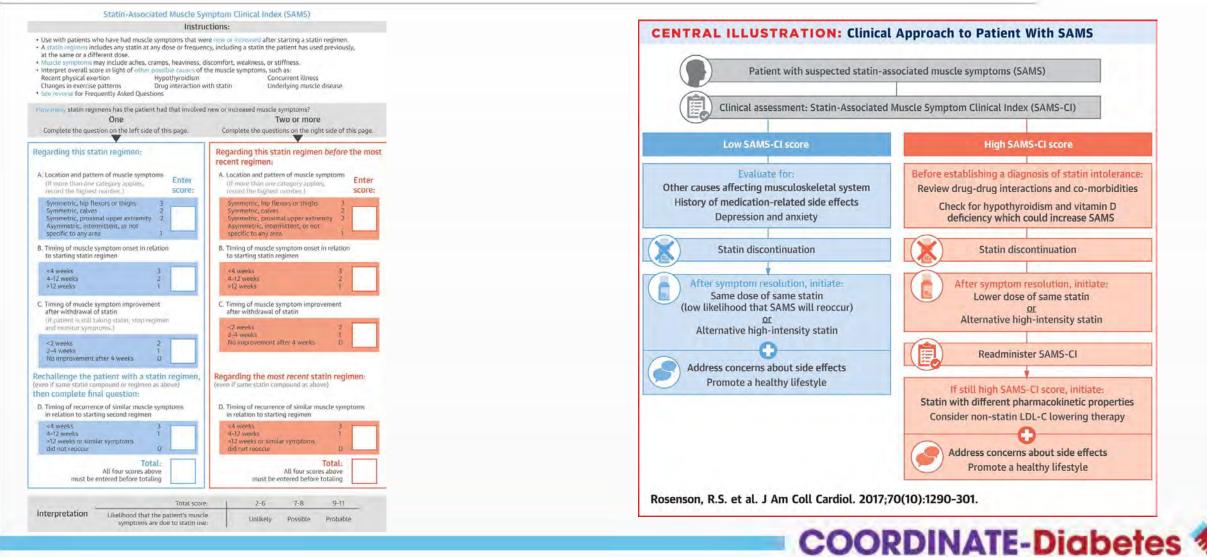
SAMS in RCTs: elephant in the room

COORDINATE-Diabetes

Ganga HV et al. Am Heart J. 2014; Mancini G Can J Cardiol 2016

GAUSS-3

- Placebo/statin double-blind crossover design to document SAMS
- Over 12 week period, intolerable SAMS experienced by those on:
 - Statin only: 42.6%
 - Placebo only: 26.5%
 - Both: 9.8%
- On re-challenge, 16% greater intolerance to statin than placebo
- Only 17.3% had no symptoms with either


Even after careful documentation of intolerance to 3 different statins,

on re-challenge only 1 in 8 have intolerable SAMS that can be ascribed to statin

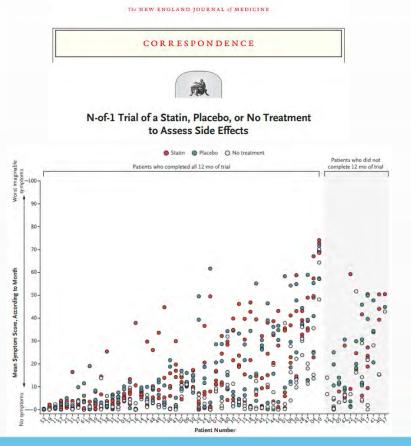
Nissen SJ et al. JAMA 2016

Many approaches to a patient with SAMS

Rosensen RS JACC 2017

Approaching a previously 'intolerant' patient

- Take time to counsel on individualized net clinical benefit.
- Demonstrate a systemic approach to excluding a physiological/pathological contribution:
 - exclude vitamin D deficiency, hypothyroidism, check baseline LFTs/CK
- Reiterate that each statin is (subtly) different
- Offer a second opinion from a lipidologist
- Reiterate the safety of re-challenge and likelihood of success (75%)


Commencing a re-challenge in an 'intolerant' patient

- Must allow at least a 2-week washout
- After establishing temporal association with a particular statin:
 - Switch from lipophilic agents (simvastatin, lovastatin, atorvastatin) to rosuvastatin/pravastatin (rosuvastatin preferred)
- Start at the lowest dose and frequency alternate daily or weekly to start (Ruisinger et al)
- Consider asking patient to keep a log-book of symptoms to discern temporal association

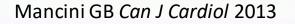
Value of n-of-1 trials

- In clinical care, determining links between symptoms and statins is difficult.
 - Blinded n-of-1 trials help to uncouple symptoms and exposure

	RESEARCH
OPEN ACCESS Check for updates	Statin treatment and muscle symptoms: series of randomised, placebo controlled n-of-1 trials
	Emily Herrett, ¹ Elizabeth Williamson, ² Kieran Brack, ³ Danielle Beaumont, ³ Alexander Perkins, ² Andrew Thayne, ³ Haleema Shakur-Still, ³ Ian Roberts, ³ Danielle Prowse, ³ Ben Goldacre, ⁴ Tjeerd van Staa, ⁵ Thomas M MacDonald, ⁶ Jane Armitage, ⁷ Jon Wimborne, ⁸ Paula Melrose, ⁸ Jayshireen Singh, ⁹ Lucy Brooks, ¹⁰ Michael Moore, ¹¹ Maurice Hoffman, ¹² Liam Smeeth, ¹ on behalf of the StatinWISE Trial Group

Table 2 | Estimated effects for secondary outcomes comparing statin with placebo periods (from participant questionnaire; n=152)

	No (%) of participant		
	Statin periods	Placebo periods	— Odds ratio (99% CI)
Muscle symptoms	248/397 (62.5)	239/388 (61.6)	1.11 (0.62 to 1.99)
Muscle symptoms, not attributed to other causes	216/397 (54.4)	200/388 (51.6)	1.22 (0.77 to 1.94)


Participants contributed multiple periods to these summaries and so the odds ratio cannot be directly calculated from these fractions. Odds ratios above 1 indicate higher odds on statins.

COORDINATE-Diabetes

Wood F et al. N Engl J Med 2020; Herrett E et al. BMJ 2001

Role of complementary therapies

- No convincing evidence for CoQ10 (Class III, Level B)
- No convincing evidence for Vitamin D supplementation, particularly in context of normal vitamin D levels
- Either or both could be considered in the context of SAMS (data free)

Case 1: Barbara

68-year-old woman

PMHx: T2DM, hypercholesterolemia, hypertension, IHD (NSTEMI 2012)

Medications: metformin 1gm BID, lisinopril/HCT 20/12.5mg daily,

empagliflozin 10mg; simvastatin 40 mg daily; clopidogrel 75mg daily

Laboratory evaluation: LDL: 130 mg/dL

History: Started an exercise program 3 months ago. Developed bilateral calf

COORDINATE-Diabetes

pain. Cut back on the exercise to be 'modest' but calf pain persisted.

Ceased simvastatin, symptoms improved after 3 weeks.

Resumed simvastatin, symptoms returned in 1 week.

Case 1: Barbara

68-year-old woman

PMHx: T2DM, hypercholesterolemia, hypertension, IHD (NSTEMI 2012) **Medications:** metformin 1gm BID, lisinopril/HCT 20/12.5mg daily, empagliflozin 10mg; simvastatin 40 mg daily

Laboratory evaluation: LDL: 130 mg/dL

History: Started an exercise program 3 months ago. Developed bilateral calf pain. Cut back on the exercise to be 'modest' but calf pain persisted. Ceased simvastatin, symptoms improved after 3 weeks.

Resumed simvastatin, symptoms returned in 1 week.

SAMS risk factors: female, >65yo, lipophilic statin, associated with exercise

PLAN: Change to non-lipophilic agent such as rosuvastatin. Start at 5mg. Up-titrate to 20mg.

COORDINATE-Diabetes

Consider vitamin D levels, exclude hypothyroidism.

Case 2: Jon

55-year-old man

PMHx: T2DM, hypercholesterolemia, IHD (STEMI 2017), cigarette smoking, obese

Medications: metformin 1gm BID, perindopril 8mg daily, empagliflozin 10mg; atorvastatin

40 mg daily, aspirin 81mg daily, ticagrelor 90mg BID

Laboratory evaluation: LDL: 140 mg/dL; AST 103 + ALT 144

History: Routine health check up. No myalgia.

Further history reveals 6 x beers most days.

Case 2: Jon

55-year-old man **PMHx:** T2DM, hypercholesterolemia, IHD (STEMI 2017), cigarette smoking **Medications:** metformin 1gm BID, perindopril 8mg daily, empagliflozin 10mg; atorvastatin 40 mg daily, aspirin 81mg daily, ticagrelor 90mg BID **Laboratory evaluation:** LDL: 140 mg/dL; AST 103 + ALT 144 **History:** Routine health check up. No myalgia. Further history reveals 6 x beers most days.

COORDINATE-Diabetes

LFTs 2-3 x ULN - ?alcohol ?NAFLD ?statin

PLAN: Continue statin. Counsel RE: EtOH and weight.

Ongoing elevation – consider other etiologies

Case 3: Lauren

44-year-old woman

PMHx: T2DM, hypercholesterolemia, IHD (NSTEMI 2016), CKD (GFR 31)

Medications: metformin, liraglutide, ramipril, clopidogrel.

Laboratory evaluation: LDL: 150 mg/dL

History: Has tried 'every statin'. Muscle aches on 'all of them'. Unclear whether

CK performed on any occasion but definitely no history of rhabdomyolysis.

Case 3: Lauren

44-year-old woman

PMHx: T2DM, hypercholesterolemia, IHD (NSTEMI 2016), CKD (GFR 31) **Medications:** metformin, liraglutide, ramipril, clopidogrel.

Laboratory evaluation: LDL: 150 mg/dL

History: Has tried 'every statin'. Muscle aches on 'all of them'. Unclear whether CK performed on any occasion but definitely no history of rhabdomyolysis. Can't remember all statins but last one was lovastatin.

High risk patient, LDL not to target. Likely to need significant effort to consider re-challenge. **PLAN: Assess willingness to re-challenge, consider rosuvastatin low dose, low frequency. Consider TFTs, vitamin D and baseline CK +/- CoQ10**

Summary

- Non-persistence is associated with poor outcomes
- SAMS is a common clinical entity affecting non-persistence
- Carefully controlled RCTs suggest absolute statin-related effect ~ 5%
- Re-challenge associated with 75% success (depending on measure)
- An intentional, deliberate and careful approach is required in patients who are considered 'statin intolerant'
- Blinded n-of-1 trials difficult to implement but may be of benefit in select individuals