The Role of Baseline and Follow-Up Ejection Fraction in Predicting Adverse Events Among Primary Prevention ICD Patients

Daniel J. Friedman, MD; Robert Overton, MAS; Linda K. Shaw, MS, Marat Fudim, MD; Divyang Patel, MD; Eric J. Velazquez, MD; Sana M. Al-Khatib, MD, MHS

Duke University Medical Center

Background

• Ejection fraction (EF) is used to make decisions about implantable cardioverter defibrillator (ICD) implantation for primary prevention of sudden cardiac death.

• Understanding clinical utility of long-term follow-up EF reassessment in predicting risk for adverse clinical outcomes including ICD therapy has important implications for patient care.

Aims

• To determine the association between baseline and long-term follow-up EF and risk of long-term (1) cardiac transplant, left ventricular assist device (LVAD) implant, or death and (2) appropriate ICD therapy.

• To determine the association between early ICD therapy and risk of long-term (1) cardiac transplant, left ventricular assist device implant, or death and (2) appropriate ICD therapy.

Methods

• We performed a retrospective landmark analysis of heart failure patients who underwent primary prevention ICD implantation (EF≤35%) at Duke University from 2006 – 2015.

• Patients were required to have a baseline EF within ≤6 months of the ICD procedure and a follow-up EF 1 – 3 years after ICD implantation.

• A 3-year landmark view was employed; the EF closest to the 3-year mark was carried forward and considered the “follow-up” EF for all analyses.

• Follow-up EF was examined using 2 categorical variables: (1) ≤10% absolute improvement compared to baseline and (2) absolute value of ≥40%.

• Patients with a cardiac transplant or left ventricular assist device (LVAD) implantation during the landmark period were excluded.

• The co-primary endpoints were (1) LVAD, cardiac transplant, or death, and (2) incident appropriate ICD therapy.

• Event rates were calculated using the Kaplan Meier method. Cox Proportional Hazard models were employed to generate unadjusted and adjusted results.

Results

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Mean (SD in %)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, years</td>
<td>59.6 (13.0)</td>
</tr>
<tr>
<td>Female, %</td>
<td>27.6 (54)</td>
</tr>
<tr>
<td>Baseline EF, %</td>
<td>26.0 (6.9)</td>
</tr>
<tr>
<td>Single Chamber ICD, %</td>
<td>15.8 (31)</td>
</tr>
<tr>
<td>Ischemic Heart Disease, %</td>
<td>53.1 (104)</td>
</tr>
<tr>
<td>Hypertension, %</td>
<td>68.4 (136)</td>
</tr>
<tr>
<td>Atrial Fibrillation, %</td>
<td>27.6 (54)</td>
</tr>
<tr>
<td>NYHA Class (VI), %</td>
<td>78.6 (154)</td>
</tr>
<tr>
<td>Prior PCI, %</td>
<td>26.0 (51)</td>
</tr>
<tr>
<td>Prior CABG, %</td>
<td>24.5 (48)</td>
</tr>
<tr>
<td>Chronic Lung Disease, %</td>
<td>37.3 (54)</td>
</tr>
<tr>
<td>Cerebrovascular Disease, %</td>
<td>11.2 (22)</td>
</tr>
<tr>
<td>GFR>60 mL/min/1.73 m²</td>
<td>30.1 (59)</td>
</tr>
<tr>
<td>Dialysis, %</td>
<td>3.6 [7]</td>
</tr>
<tr>
<td>ACE or ARB, %</td>
<td>54.9 (186)</td>
</tr>
<tr>
<td>Beta-blocker, %</td>
<td>77.0 (151)</td>
</tr>
<tr>
<td>Diuretic, %</td>
<td>62.8 (133)</td>
</tr>
</tbody>
</table>

Follow-up EF and Cardiac Transplant, LVAD, or Death

Follow-up EF model: Improved (≥10%) vs. stable or worsened

Baseline EF 26.0±6.9, N=196

Follow-up EF 30.1±10.2, N=196

≥10% EF increase: 25.5% (n=50)

≥40% EF increase: 22.4% (n=44)

Time Period Medium Time

ICD implant to follow-up EF assessment (days) 818
Follow-up for cardiac transplant, LVAD, or death 1078
Follow-up for ICD therapy (days) 977

Follow-up EF and Appropriate ICD Therapy

Follow-up EF model: Improved (≥10%) vs. stable or worsened

Baseline EF 26.0±6.9, N=196

Follow-up EF 30.1±10.2, N=196

Multivariable models relating follow-up EF and appropriate ICD therapy with 3-year landmark view

Follow-up EF model: Improved (≥10%) vs. stable or worsened 240% threshold

Adjusted HR: 0.26, CI 0.08 - 0.85

Multivariable models relating follow-up EF and cardiac transplant, LVAD, or death with 3-year landmark view

Follow-up EF model: Improved (≥10%) vs. stable or worsened 240% threshold

Adjusted HR: 0.26, CI 0.08 - 0.85

Limitations

• Retrospective, single center analysis

• Repeat EF assessment is not standardized after ICD implantation and is frequently obtained due to change in clinical status, potentially leading to bias

• ICD therapy zones were not standardized. ICDs were typically programmed with one zone with VF detection; beginning at 188bpm until publication of MADIT-RIT, when VF detection was routinely increased to 200bpm. Monitor only zones were typically programmed beginning at 150bpm.

Conclusions

• Among primary prevention ICD recipients, neither baseline nor long term follow-up EF appears to predict survival free of LVAD or cardiac transplant during follow-up.

• In contrast, both baseline and follow-up EF independently predict incident appropriate ICD therapy.

• Early ICD therapies are unreliable predictors of long-term ICD therapies.

Disclosures

EF Fradis, reports educational grants from Boston Scientific, and is a member of the scientific advisory board for Boston Scientific. DOB, is a consultant for Amgen, and receives research funding from the American College of Cardiology and the American Heart Association. KF, has no relevant conflicts of interest to disclose. AH, is a consultant for Amgen. The funders had no role in the study design, data collection, data analysis, decision to publish, or preparation of the manuscript. All authors attest to being fully and independently responsible for all aspects of the manuscript.